
The magnitude of the acceleration that is 
changing the direction of the motion (this 
is perpendicular to the motion in the 
centripetal or radial direction) is equal to:

1.)

The slowing train, as viewed from above, 
is shown to the right, complete with 
acceleration vectors at the end-point.
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!v1 = 90.0 m/s( ) ĵ

R = 150. m

!v2 = 50.0 km/s( ) − î( ) at
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2.)

 
!v1 = 90.0 m/s( ) ĵ

ar

R = 150. m

 
!v2 = 50.0 m/s( ) − î( ) at

The magnitude of the acceleration 
that is physically slowing the motion 
(this is along the line of the motion in 
the tangential direction) is equal to:
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3.)

ar
at

Putting everything together yields:

 
!a

Noting that the final acceleration vector is 
in the fourth quadrant if we rotate the 
axes and measure the angle relative to 
the tangent (see sketch), our polar 
calculation will not require the addition of           
and we can write:

 

!a = 1.29 m/s2( ) r̂ − .741 m/s2( ) θ̂ = 1.29 m/s2( )2
+ −.741 m/s2( )2( )1/2
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